Marine microbiology is one of the most exciting and important areas of modern science. This site contains reviews of recent research papers in the field.
Friday, 24 August 2012
A Model Ocean To Study Nitrogen Use
Thursday, 23 August 2012
Symbiotic Degradation Of Crude Oil
Marine Microbes as Pharmaceutical Agents
The Many Isolates of VHSV In Rainbow Trout
Coral Reefs - More Danger Than Originally Thought?
The Role of Marine Viruses and the Understanding of Nutrient Cycling
Rising CO2 Levels - Worse Than You Thought!
Xenobiotic Metabolizing Bacteria of the Indian Ocean - Getting More Common?
Sunday, 15 April 2012
Monitoring sewage pollution with sea fans
As populations continue to rise, especially on the coastlines, sewage pollution is becoming a greater threat to coastal marine systems. The input of contaminants, especially nutrients such as nitrogen and phosphate can greatly disturb the environment. Increases in primary productivity can smother critical species such as sea grasses and reef building corals, pathogens can cause disease especially in corals and there is a generally common result of lowered biodiversity. While monitoring of this kind of activity is important everywhere, it is especially important that it is studied and controlled in developing regions which are often dependent on their ecosystem’s health and wellbeing.
This study hypothesised that sewage-derived nitrogen inputs are detectable and more severe in developed areas along the Mesoamerican barrier reef of Mexico. To test their hypothesis in this area they compared the stable nitrogen isotope (δ15N) values from the common Caribbean sea fan, Gorgonia ventalina, collected from a developed and undeveloped are of the coastline. Akumal coast was selected as the developed site as there are a great number of residents and a huge influx of tourists. The shoreline of Mahahual was selected to be the undeveloped site since there were few residents and tourists and a sewage treatment infrastructure.
The isotopic ratio of 15N:14N is regarded as an effective and direct indicator of human nitrogen pollution. Enriched isotope values arise from the accumulation and degradation of human and animal wastes and are easily distinguishable from other sources. Perpendicular to the shore samples of sea fans were taken 1km from the shore. 2cm-squared fragments were cut that are
likely to represent the previous year of growth. Stable isotope analysis was performed on the samples. The prevalence of Enterococcus was sampled at sites adjacent to where the sea fans were sampled. Enterococcus assays were used to determine if the nitrogen isotope analysis values were correlated with sewage pollution. Positive results for this test would rule out the possibility of enrichment due to denitrification. Statistical analysis was then performed.
Results found that samples from the developed site sea fans were enriched in δ15N (as high as 7.7‰ near shore) and were ≈3.5‰ greater than sea fan samples from the undeveloped site. The δ15N values were also positively correlated with faecal Enterococcus counts from the seawater. This confirms that the enrichments are associated with sewage and not denitrification. This study suggests that data collected from the undeveloped site which is relatively pristine could now be used as an isotopic baseline for monitoring the Mesoamerican barrier reef at sites where increased development is planned or underway. Another interesting find of this study was that the highest Enterococci counts were found to be from a lagoon popular with bathing tourists. The counts were approximately 59CFU per 100mL. The presence of faecal Enterococci is well above US Environmental Protection Agency standards for recreational waters which is 35CPU per 100mL.
This method of stable isotope analysis in sea fans could be a promising tool for monitoring changes in the contribution of human nitrogen sources to nearby ecosystems, especially in developing regions where water quality monitoring programs are not established.
Not just for the Bathroom...
Nitrification in the OMZ of the Arabian Sea (OMG!)
Bioactive potential of Seagrass bacteria against human bacterial pathogens
In particular, marine plants are known to produce a large number of structurally diverse secondary metabolites. Seagrasses are the only angiosperms to successfully grow in sub-tidal and tidal conditions. Several species of Seagrass have obligate microbial populations within their roots, leaves and rhizomes. Some medicines and chemicals are already prepared from Seagrasses and their associates.
An even greater concern than bacteria which are resistant to a single antibiotic is bacteria which are resistant to multiple antibiotics. As antibiotic resistance has developed, researchers have developed alternative antibiotics and combination therapies. However, the constant overuse of antibiotics in humans and their livestock has led to many bacteria being resistant to many antibiotics. The problem of resistance demands renewed efforts to seek antibacterial agents effective against pathogenic bacteria.
Two species of Seagrass from the SE coast of India were sampled and returned to the lab under sterile conditions, for the isolation of epiphytic and endophytic heterotrophic bacteria. 32 strains of endo/epiphytic bacteria were tested for their antagonistic activities against 5 antibiotic resistant human pathogens, of these, 10 were found to be antagonistic against one or more human pathogens. The authors go on to discuss the minimum inhibitory concentrations (MIC) as well as minimum bacterial concentrations (MBC) for the 32 tested strains.
The outcome of this research is that the endophytic bacteria isolated from the Seagrasses showed maximum sensitivity against several of the human pathogens compared with the epiphytic bacteria. And also that the bioactive compounds from the endophytic bacteria show maximum sensitivity with MIC than the bioactive compounds from the epiphytic bacteria.
From the outcomes of this research steps have been taken to find out the reason for the maxium activity of endophytic bacteria from Seagrasses.
There were two main reasons I choose to review this paper 1) The use of natural sources in the fight against humans pathogens is something that I find interesting and 2) In another module I have studies Seagrasses and like to see an over-lap/relation between modules. That being said, I found this paper very hard to read. It appears to me that the authors first language is defiantly not English, the paper did not read smoothly and the sentences seemed very disjointed, this I feel should have been addressed further. There were also seemingly simple mistakes made, for example species names were not italicised – I think these should have been picked up on. Simple changes would have made for a better read.
Despite this, the results of the paper are encouraging and the above mentioned points shouldn’t distract from the outcome. I hope that more antibiotics which can be used against both human and animal pathogens are found, as the problem of antibiotic resistance does appear to be rising.
A review of:
Ravikumar, S., Thajuddin, N., Suganthi, P., Inbaneson, S. J. and Vinodkumar, T. (2010) Bioactive potential of seagraa bacteria against human bacterial pathogens. Journal of Environmental Biology. 31 387-389.
Biofilms lead the way
Biofilms are thought to stimulate the attachment of invertebrates and algae to marine surfaces. This is known as biofouling, which refers to the accumulation of organisms and biogenic structures on marine surfaces. In particular sessile organisms compose the fouling assemblage. Many organisms such as barnacles and tubeworms produce shells and other firm structures during growth, which allow for the attachment of other organisms. This results in a multilayered fouling community. A central issue to the build up of biofouling on ships is an increases fractional drag, biofouling covers oceanographic equipment, coats floating structures and promotes structural deterioration. Biofouling costs industry billions of dollars per year due to prevention costs, maintenance and additional fuel consumption. Biofouling begins with the formation of biofilms followed by the aggregation of other diatoms and other micro-organisms bound together by extracellular polymeric substances. Biofilms can form within hours of immersion and rapidly increase in density and structural complexity. Furthering this, algae and invertebrates and aggregate. Biofouling is thought to be facilitated by the detection of appropriate sub strata and adhesion of larvae. It is thought that chemical cues play a pivotal role in invertebrate settlement. Microbial biofilms produce chemical signals that attract settlement. Antifouling research has provided information about the structure and function of biofilms, in particular with reference to understanding the adhesion and settling of invertebrate influence by microbial films. Zardus et al.'s research investigates the influence of microbial films on the adhesion of newly settled invertebrate larvae, they compared the removal rate of settlers from glass surfaces with and without natural biofilm coatings after exposure to controlled forces of shear. Their research was carried out on four marine fouling organisms: polychaete worm Hydroides elegans, barnacle Balanus Amphitrite, bryozoan Bugula neritina and a tunicate Phallusia nigra.
Larvae of the four invertebrate species were obtained from field collected adults and cultures were maintained in the laboratory following standard protocols. Trials were carried out in a turbulent channel flow apparatus and replicates of treatments were tested on the different invertebrates.
Larvae settlement was much greater on biofilm glass than on clear glass surfaces for Hydroides elegans, same was the case for Balanus amphitrite. Biofilms also had a positive effect on the adhesion strength for some of the settlement stages. Therefore bioflims increase invertebrates shear strength.
Adhesion of larvae is facilitated by microbial biofilms providing a connection between biofouling and biofilms. The mechanisms that cause this relationship require further research. Invertebrates use viscoelastic gels that have an adhesive nature in the presence of biofilms and form complex interactions, the adhesive strength is dependent on the taxa involved. It is suggested that biofilms may also stimulate increases and decreases in the adhesive produced by invertebrates, which has consequences for its structural strength. The trend observed was that with age invertebrates showed stronger adhesive forces. This discovery that biofilms facilitate invertebrate adhesion requires further research. Investigations are called for into the physical mechanisms of the biofilm invertebrate connection, paying particular attention on how these adhesives are modulated.
It is understandable that biofouling is undesirable for ships, however if structures such as marine renewable energy devices attract biofouling, this may have trophic food chain benefits supporting local biodiversity. This may be a desirable outcome provided biofilms don't cause any structural corrosion.
References:
Sorry Gastroenteritis. Theres just no relationship between us. From Entrococci
The purpose of this study was to evaluate the risk of exposing bathers to human pathogens in sub tropical recreational marine waters with non-point source of sewage and other pollutants. The authors also examined possible relationships between microbial densities and random symptoms in human subjects by questioning bathers at random and following up with microbial monitoring.
A group of regular adult bathers were recruited and divided into two separate groups : bathers and non bathers. Bathers were required to spend 15 minutes in knee deep water across the beach and submerge their heads every 5 minutes. Water samples were also collected by the bathers which were assayed for enterococci by membrane filtration. The non bathers group were not allowed to enter the water and were restricted to sitting on a plastic seat in a covered roped off area distant from water and sand exposure for 15 minutes at a time. This was followed up 7 days later with a phone questionnaire to determine if any of the bathers and non bathers had any illnesses.
From the water sampling it was determined that all bathers were exposed to an average of 71 enterococci/100ml of water however there was a very large range between samples. Symptoms reported after a week included gastrointestinal, skin, eye and ear infections which would normally be associated with exposure to contaminated bathing waters. Bathers reported more gastrointestinal, respiratory and skin infections compared to the non-bathers group and also reported a significantly shorter onset time of illness.
This paper confirms that people bathing are more likely to acquire infections from subtropical recreational marine waters compared to those that do not bathe even when there is no source point.
It was also found that the skin illnesses reported were dose dependant, as expected, however there was no relationship between the degree of exposure to enterococci and severity of the respiratory and gastrointestinal infections with the causative agents unknown. This could have further implications as, currently, many U.S. authorities monitor water systems using gastrointestinal illnesses as an indicator to water quality. Therefore, if there is no direct correlation between dose and outcome of gastrointestinal illness, the advice given by these authorities may not be completely accurate.
Although this was the first paper of its kind, all the participants were previously healthy adults and does not represent children or anyone with a compromised immune system.
A review of: Fleisher, J.M., et.al.; 2010; The BEACHES Study: health effects and exposures from non-point source microbial contaminants in subtropical recreastional marine waters; Int. J. Epidemiol.; 39(5): pp1291-98.
Rhamnolipid, another application
I have spoken about the uses of rhamnolipids, a biosurfactant, before and this paper goes on to talk about their potential to disrupt biofilms from surfaces exposed to the marine environment, a simple but generally unexplored area. Specifically this paper focuses on the biofilm crated by Bacillus pumilus and the effect of rhamnolipid on its ability to adhere to steel. Many Bacillus species are resistant to harsh environmental conditions such as low nutrient availability and UV radiation and this hardiness also means they are able to resist anti- fouling biocides. Adhesion to steel and the production of sticky exopolysaccharides and organic acids by Bacillus biofilm leads to increased corrosion and thousands of dollars’ worth of damage. Primary colonizing bacteria are the first to adhere to such surfaces and so the killing and ideally the removal of such is an important problem in need of a solution, biosurfactants could act as that solution.
B. pumilus were allowed to adhere for 4 hours at 30°C. Different concentrations (0.05 – 100mM) of rhamnolipid were then added to the polystyrene microtitre plates and left for a further one hour. After staining the results were taken as a percentage of cell adhesion compared to control plates which were not treated with rhamnolipid.
Exopolymeric substances (EPS), which have been investigated in other blogs, are the basis for adhesion of cellular substances to surfaces underwater. They allow for the attachment of other species leading to a community of microbes ultimately creating a damaging biofilm. Rhamnolipids have been shown to have antimicrobial as well as surfactant properties against other bacteria such as B. subtilis and Staphylococcus epidermis at low minimum inhibitory concentrations (<1.6 mM MIC) however the growth of B. pumilis in this case was not inhibited until >1.6mM and therefore higher concentrations of rhamnolipid are needed compared to other Gram negative bacteria. In contrast to this, at low concentrations, rhamnolipid significantly inhibited the adhesion of 46 – 99% of B. pumilus, after one hour there was at least 80% inhibition of adhesion to the polystyrene surfaces which may be enough to prevent the formation of biofilm. Other tests with different bacteria also show the effectiveness of rhamnolipid as an anti – adhesive when it comes to biofilm.
EPS is thought to neutralize antimicrobial agents and therefore assist the microbial community form dangerous biofilm. Therefore the disruption of such EPS could stop such formation. At higher concentrations than the MIC value there was a significant dose – dependent increase in biofilm disruption after treatment with rhamnolipid. After one hour there was significant EPS disruption and 24hours treatment led to destruction of microcolonies. One problem with this report is the suggestion that rhamnolipid usage would be more successful with the help of biocides. In the marine environment the use of biocides in unattractive due to other environmental hazards this brings about. However, the treatment of rhamnolipids does have potential and should be investigated further.
Review of Dusane et al (2010) Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms
Fugu no longer toxic!
Marine pufferfish of the family Tetraodontidae can be known to possess a neurotoxin (TTX/Tetrodotoxin). This toxin is poisonous to humans, causing paralysis and even death. In Japan ‘Fugu’ is a popular dish which is made from these pufferfish. Many believe the liver to be the tastiest part, however this is also the most toxic. Safe preparation of this dish requires a great amount of training and the serving within restaurants is strictly controlled. The serving of the liver has even been banned due to a frequent occurrence of food poisonings. No detailed studies have been made on the mechanisms of uptake, accumulation, metabolism and excretion of TTX in pufferfish. While they do have a TTX-secreting gland or cells within their skin which is thought to be a defence mechanism, only a small amount if any is ever produced and this does not intoxicate the liver. Previous studies have suggested that the pufferfish do not synthesise the TTX by themselves. Instead they are thought to accumulate it through the food chain. So this study hypothesised that non-toxic pufferfish should be able to be produced if cultured with a TTX-free diet.
Over 5000 species of the pufferfish, Takifugu rubripes were cultured by netcages at sea, and aquaria on land for up to three years. As they are known to accumulate the toxin mainly in the liver and ovary following ingestion, the liver was focussed on for testing, but other parts were also used. Toxicity was assessed using the Japanese official mouse assay method for TTX and also LC/MS analysis. Each tissue was extracted with 0.1% acetic acid and then examined for toxicity through intraperitoneal injection into male mice.
The results indicated that all parts of all pufferfish tested were considered to be ‘non-toxic’ in both the mouse assay where levels were less than 2MU/g and the LC/MS analysis where levels were less than 0.1MU/g. The expression MU is used where 1 MU is defined as the amount of toxin required to kill a mouse in 30 minutes after injection. Anything less than 10MU/g is considered to be non-toxic in food hygiene. This provides solid evidence that the pufferfish become intoxicated through the food chain and non-toxic fish can be successfully produced by netcage or land culture irrespective of culture area and season. If cultured in this way, the fish and in particular the liver can be considered safe to consume.
Lava Eaters
New Species of Bacteria Isolated from the RMS Titanic
A review of: Sánchez-Porro, C., Kaur, B., Mann, H., and Ventosa, A. (2010) Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic. International Journal of Systematic and Evolutionary Microbiology 60:2768-2774
A new species of bacterium isolated from the RMS titanic is described in this paper. The bacterium was isolated from the rusticles on the ship, bioconcretious structures that look like icicles but are formed from oxidised iron. Various microorganisms live within these structures, which are the by-product of the microorganisms effectively feeding off the metal of the ship.
In this study, the authors used phylogenetic analysis alongside other methods including obtaining 16s rRNA though PCR to perform a BLAST search in order to try and identify the strain. The results of these methods showed that the strain isolated was most closely related to the genus Halomonas. Its most closely related species included Halomonas neptunia (98.6% sequence similarity), Halomonas variabilis (98.4%), Halomonas boliviensis (98.3%) and Halomonas sulfidaeris (97.5%), amongst others confirming it belonged in the Halomonas genus. However, several important differences, including phenotypic and chemotaxonomic differences features that confirmed the strain was a separate and distinct species not previously identified. The paper goes on to describe the new bacterium in detail.
The genus halomonas is heterogeneous, containing more than 60 species to date and are a member of the salt-loving Halomonadaceae family which are able to grow at salinities of 5 - 10% and who are considered generally non-pathogenic aerobes. The new bacterium is also gram negative, flagellated and motile.The discovery of this new bacterium is of particular interest as it may contribute more to the understanding of the mechanisms of rusticles, how they form etc. It also can have wider implications in understanding how to protect other submerged metal structures such as oil pipeline, oil rigs and the disposal of ships at sea for example.
Additional reference: BBC. (06/12/2010). New species of bacteria found in Titanic 'rusticles'.Available: http://www.bbc.co.uk/news/science-environment-11926932.
Prebiotics help for soybean meal bases, do they work?
The authors used a recirculation system for the 35 sub adult Red Drum which were fed a control diet containing 40% crude protein, exclusively from menhaden fish meal, 0% lipid, and an estimated available energyof14.6 kJ g-1. Five experimental diets were to be similar to the control diet, but with approximately 50% of the protein supplied by menhaden fish meal and 50% provided by soybean meal. To four of the experimental diets, prebiotics were singularly added at 1% of dry weight in place of cellulose while the basal diet had no prebiotic supplementation. The prebiotics in use for the trial (a mix or individually) were mannanoligosaccharide (MOS), galactooligosaccharide (GOS) and inulin. The faecal matter was used for nutrient analysis.
The results showed that the basal diet mixed with MOS and GOS significantly increased protein (82% for the three tanks) and organic matter (69, 64 & 66% for the three tanks) in comparison to the control diet which showed 69% for protein and 49% for organic matter. However the lipid values were significantly decreased for fish fed with MOS, GOS and inulin (63, 61 & 61%) compared to the control of 77%. Energy values were the same for the fish fed with inulin as the control diet of 54%.
This is the first study to demonstrate that nutrient and energy digestibility of soybean-meal-based diets can be enhanced by prebiotics. The wider significance of this investigation is paramount to replacing a higher percentage of fishmeal in fish diets with soybean and or other protein replacements. The side effects such as gastroenteritis can be treated with probiotics and the protein enhancement can be treated with prebiotics, thus a mixture of both in diets would be the next step in further research.
A review of: Burr, G., Hume, M., Neill, W. H., & Gatlin III, D. M. (2008). Effects of prebiotics on nutrient digestibility of a soybean-meal-based diet by red drum Sciaenops ocellatus (Linnaeus). Aquaculture Research, 39, 1680-1686.
The occurrence of enteric viruses in shellfish
A review of: Suffredini, E., Corrain, C., Arcangeli, G., Fasolato, L., Manfrin, A., Rossetti, E., Biazzi, E., (2008), Occurrence of enteric viruses in shellfish and relation to climatic-environmental factors, Applied Microbiology, 47(5):467-474
Shellfish are considered to be potential vectors of foodborne diseases, due to their accumulation of pathogenic microorganisms through filter-feeding. Norovirus (NoV) is an enteric virus that has been linked to shellfish-associated disease outbreaks and is responsible for 60-80% of human gastroenteritis outbreaks. Similarly, shellfish are linked to the transmission of hepatitis A virus (HAV), and its consumption has been reported in 69% of HAV infected patients. In Italy, there have been numerous cases of these diseases related to seafood consumption registered in several cities.
It has been established that climate has direct and indirect effects on the occurrence of enteric viruses. For example, high precipitation can cause flooding and sewage runoff which are key factors in contamination of coastal water and shellfish harvesting areas.
The aim of this study was to assess the prevalence of HAV and NoV in shellfish harvested in a specific national production area, the deltic area of the river Po (North Italy). They also looked at the effect that environmental factors have on viral contamination in the production area.
A survey was carried out for 1 year on samples of shellfish (mussels and clams), taken every 15days from two areas, A (sea area) and B (lagoon area). Environmental parameters such as temperature, pH and salinity were noted as well as bacteriological analysis (for E.coli and Salmonella) and virological analysis (for NoV and HAV), using various PCR methods.
The results showed no significant differences in environmental paramaters in the two areas, with some predictable fluctuations due to seasonal variations. No Salmonella was detected and E.coli numbers were always below legislation limits. There was also no HAV found in both areas but NoV was detected in 10 of the 120 samples, all from area B. NoV was also present in samples ranging throughout the sampling period, with the majority of positive samples in spring and summer. This led the researchers to conclude that a definite association between NoV clinical cases arising during the winter period and shellfish cannot be established.
They also noted that the increase in viral contamination could be in relation to the flow of the tributary river, which could transport further viruses into the harvesting areas and moreover mixes and lifts the sediment at the bottom of the lagoon where viruses can deposit and survive for long periods.
The study highlights the importance of accurate classification of harvesting areas in assuring the safety of shellfish for direct consumption and is useful in helping to establish suitable prevention techniques, especially after meteorological events.
Novel adenovirus isolated from sea lions
Viruses of the family Adenoviridae have genomes consisting of double stranded DNA. They infect various species of vertebrates, including humans. Adenoviruses were first isolated in 1953 from human adenoids. Two types of canine adenoviruses are well known, type 1 and 2. Type 1 causes infectious canine hepatitis, a potentially serious disease involving vasculitis and hepatitis. Type 1 infection can also cause respiratory and eye infections. Canine adenovirus 2 (CAdV-2) is one of the potential causes of kennel cough. Viral hepatitis associated with adenoviral infection has been previously seen in free-ranging California sea lions Zalophus californianus. However previous isolation of viruses were unsuccessful and identification of this virus was ceased and no specific virus was documented. However because the morphological features seen under the microscope were quite similar to that of canine infectious hepatitis and since the virus has a wide host range, it was thought that perhaps the virus responsible for disease was CAdV-1.
The presence of adenoviral DNA was examined in tissue samples from 2 live stranded California sea lions that were admitted to the rehabilitation facility at Californian Marine Mammal Centre. The two rescued animals died with serious symptoms , first was diagnosed with arteritis , pneumonia and pulmonary haemorrhage. Also eosinophilic intranuclear inclusion bodies (sign of adenoviral infection) were discovered in few organs including lymph nodule and lungs. The other case died from severe viral hepatitis with intranuclear eosinophilic inclusions found within hepatocytes.
Tissues from both animals were first examined under electron microscope and then analysed using PCR with the use of specific primers (sense: 5’-GCG CAC TTA CTC ATC CAT TTC C-3’, antisense: 5’-GCT ATT TCT CCA CGC AGC GG-3’). The virus was isololated and compared with known adenoviruses.
The examination of lymph node from first animal and liver of the second one revealed the presence of adenoviral-like particles (70 to90 nm icosahedral) , within the nucleus of affected endothelial cells .The sera from both animals were negative for antibodies against both CAdV-1 and 2. The PCR to detect CAdV-1 and 2 was also negative. Sequencing confirmed the presence of a fragment of the DNA polymerase gene of a novel adenovirus and comparison of the sequence to known adenoviruses in GenBank showed that this was a novel virus from the Mastadenovirus genus. This virus was similar in 77% to tree shrew adenovirus 1 (TSAdV-1) CAdV-1 (72%) and 2 (74%) however in overall is was treated as independent lineage and species.
This was very interesting study and quite exciting that they managed to find new virus , although the more analysis is needed in order to establish if this virus is a primary pathogen causing death. It is quite surprising that although the symptoms of this disease were quite similar to those reported in many other cases , nobody actually managed to identify this virus before.
A review of Goldstein et al.2011 . Isolation of a novel adenovirus from California sea lions Zalophus californianus. Dis Aquat Org. 94: 243–248.